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ABSTRACT

This paper presents a novel multislage motion estimation
(ME) scheme called Content Adaptive Search Technigue
(CAST). The proposed scheme consists of four stages:
motion vector field (MVF) prediction, block-based
segmentation, motion parameter extraction, and adaptive
search strategy. Through pre-processing the MVF of the
previous reference frame in the first three stages, CAST
extracts the motion parameters for each region. The 4th
stage 1s a combination of various techniques including
MV prediction, search area decision and an adaptive fast
search algorithm that is adjusted by a mathematical model
for the block distortion surface {BDS). Experiment shows
that the proposed scheme improves the visual quality,
while yielding a faster speed, comparing with the other
predictive ME algorithms.

1. INTRODUCTION

It is well known that motion estimation is the main
computational bottleneck in block-based video coding. To
avoid the intensive computation in full search algorithm,
fast ME algorithms such as [2][3]{8], have been proposed.
In the last few years, 3 new class of ME adopting motion
vector (MV) prediction techniques came forth [1][5][7].
Nevertheless, it has been shown that the performances of
the above mentioned algorithms highly depend on the
characteristics of the video contents. There is no single
algorithm that can adapt to all kinds of video contents.

We intend to tackle this issue by introducing online
analysis technique to the adaptive ME process. In this
paper, we propose a multiple stage ME scheme for video
compression, which is called content adaptive search
technigue (CAST). CAST can provide adaptability to the
video contents to maximize the overall performance.

The innovative features of CAST include:

*  Weighted Mean Inertia MVF prediction;

*  Online analysis for motion parameter extraction;
=  Mathematical model for block distortion surface;
= Adaptive search area decision and MV prediction;
*  Adaptive fast search algorithm.

The remaining of the paper is organized as follows:
Section 2 introduces the CAST scheme. Subsections are
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included to describe the various stages. Section 3 presents
the performance evaluation results. Finally, the paper is
concluded in Section 4.

2. CAST MULTISTAGE SCHEME

2.1 Overview

Various techniques are utilized in a ME algorithm,
such as MV prediction, search range, search pattern, and
search strategy. Most of these techniques are highly
motion-dependent. CAST pre-processes the MVF of the
previous reference frame to extract the motion parameters,
Being aware of the characteristics of the video contents it
is dealing with, the algorithm can choose the optimal
parameters for these techniques. The block diagram of
CAST is shown in Fig. 1.
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Fig. 1: Block diagram of CAST.
2.2 Motion Vector Field Prediction
Recently, new MVF prediction methods exploiting the
motion inertia property are proposed [4] [7]. Here, we
propose a novel Weighted Mean Inertia (WMI) MVF
prediction method that not only increases the prediction
accuracy, but also predicts the MB distortion. WMI is
described as following.

Let MB;,; denote a macroblock (MB) i in frame #-1.
The MV and distortion of MB;,.; are MV,,.; and D, ,.;. Due



to the motion inertia property, MB;,.,; intends to maintain

its motion and has a displacement —MV;,; in the next

frame. Let £;, denote the displaced MB;,.; in frame 2. P;,

overlaps one or more MBs in frame ¢ Let §;; denote the

overlap of P;, and MB;,, PMV;, and PD;, denote the
predicted MV and distortion of MB;,. PMV;, and PD;, are

given below. An illustration of WMI is shown in Fig, 6.
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The correlation coefficients between PMVF and the
true MVF reflect the prediction accuracy. Table 2 shows
that the WMI MVF prediction is more accurate than the

inertia MVF prediction proposed in [7].

2.3 Block-based Segmentation _

The segmentation is based on the WMI PMVF obtained in

stage 1. A frame is segmented into three regions, i.e.

foreground, background and uncovered background,

Uncovered background is the region from which the

foreground object moves out.

The block-based segmentation consists of the
following steps:

Step : Estimate the affine transform parameters from
the WMI PMVF using the approach in {6].

Step 2: Reconstruct the background MVE with the
estimated affine transform parameters.

Step 3: Subtract the reconstructed MVF from the WMI
PMVF. Compare the reconstruction errors with a
predefined threshold 7.

Step 4: Cluster the MBs with the following rules:

Let F, B and U denote the sets of MBs in
foreground, background and  uncovered
background. For each MB,; :

LI Zs, <M ap U

2. Else, if the reconstruction error is larger than T,
MB; e F, otherwise MB, B,
Fig. 7 is an example of background and foreground MVFs.

2.4 Motion Parameter Extraction

Motion parameters representing the motion characteristics
of each region are extracted. Mp,.; (Mz,) indicates the
motion velocity in foreground (background). Mromp
{Mpeomp) indicates the motion complexity in foreground
{background). Mg, (Mg} is the average length of MVs
in foreground {background), while Mr.omy (Mpcomp) is the
standard  derivation of MVs in the foreground
{background). In the context below, M, represents either
Miyer O Mpyer, and M, represents either Mre,m, OF Mpeomp,
depending on the region of the current MB.

2.5 Adaptive Search Strategy

The adaptive search strategy consists of search area
decision, MV prediction and an adaptive fast search
algorithm, which is tuned by the motion parameters and

the block distortion surface model.

2.5.1. Adaptive Search Area
We observe that the prediction errors are concentrated to
zero in regions with low M., On the contrary, in
regions with high M., the prediction errors distributes
in a wide range. We exploit this property by employing a
small search area in regions with low M, while
applying a large search area to regions with high M.
We categorize M., into three levels: low, medium
and high. The search area for each level covers a diamond
shape with a radius defined in Table 1. The radius is
obiained through experiments using the following method.
Let p; be the probability density function of MV
prediction error /. The radius is equal to the minimum 7

I
satisfying 2.0 2 P, . Pruger 15 the accumulated probability,

which is set to 99%.
Tabhle 1: Search area decision
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Fig. 2: PSET construction process

2.5.2. MV Prediction
CAST maintains a set of MV predictor candidates
(PSET). Let MV,5, MV,, and MV, i1 denote the MVs of
the left, upper and upper-right coded MB in the current
frame. PMV,,, PMV,,, PMV.y, denote the WMI
predicted MVs of the current, lower and right MB. MV, ..,
denotes the mean of MV, MV,and MV, . The
members of PSET are selected from the above MVs.

We define R as the set of the left, upper and upper-
right MBs of the current MB. Local motion activity

current MV=PMV,,,,
No search is required




(LMA) is defined as the maximum Manhattan iength of
MV, MV, and MV, .on, representing the local motion
consistence. Fig. 2 illustrates the PSET construction.

After the construction, members of PSET are
evaluated first. The candidate associated with the
minimum distortion is selected to be the MV predictor.

2.5.3. Block Distortion Surface (BDS) Model

The BDS consists of distortion values of all check
points. The center of BDS is the global minimum position
(GMP), as illustrated in Fig. 3. We propose a
mathematical model for BDS to estimate the distance
from the current check point to the GMP.
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Fig. 3: Average block distortion surface of Stefan,
Let r be the distance from a check point to the GMP.
D(r) is the distortion function. Through extensive
experiments, we observe that D(r) is related to the global
minimum distortion D(0). The relation can be described
by (D)~ D)) /DY = g-r  as shown in Fig, 4.
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Fig. 4: (D(r)-D(0))*/D(0)’ is closely linear to r

Here, we model g(M,.) with a rational quadratic
polynomial: g(Mmr):l/(a+bM,,e,+che,2), (@a=0.0i3, b=

0.1, ¢ = 0.081). Finally, the equation can be reduced to:
r=[Doome)

D(0)
The equation allows to estimate the distance r, given
D(r), M, and D(0). We approximate the value of D(9) by

the WMI predicted distortion in (1).

2.5.4. Adaptive Fast Search Algorithm

In the final stage, an adaptive fast search algorithm is
performed to find the MV. The search starts from the
Initial Check Point (ICP) pointed by the MV predictor.
First, 2 cross pattern centered at the JCP is evaluated,

J~(a+me +eM, ) 2)

which consists of 4 check points: (5,0), (0,-5), (-5,0), (0,5).
s is the size of the cross pattern. [nitially, s =1 if r < 4,
otherwise s = 2. If one of these 4 check points has the
minimum distortion, the direction indicated by this check
point is the distortion decreasing direction. Then, a one-
dimensional search will be performed along this direction.
The step size of the one-dimensional search increases
exponentially. E.g. if (5,0} has the minimum distortion,
(25,0), (45,0), (85,0)..., will be checked sequentially. It
will continue until the distortion increases. In the above
example, if the distortion begins to increase at (8s,0), the
one-dimensional search is stopped and {4s,0} will be the
new search center. Then, a cross pattern on the new
search center is employed again, to adjust the search
direction. The process repeats until the minimum
distortion occurs at the center of the cross pattern. Then, a
cross paltern with smaller size is used to verify the GMP,

Fig. 5 illustrates the adaplive {ast search algorithm.
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Fig. 5: Adaptive Fast Search Algorithm
3. PERFORMANCE EVALUATION

This section presents the performance evaluation. We
compare CAST with two ME algorithms, MVFAST [1}
and AMSED [7], which are based on MV prediction
technique. MPEG-4 recommended MVFAST is used as
reference. Several bench mark sequences, from slow to
fast motion, are encoded in the simulation. PSNR and
speedup are used to evaluate the quality and speed
performance. _

Table 3 shows that CAST substantially improves the
search speed and achieves higher visual quality than the
other two ME algorithms, for all kinds of video contents.
In particular, CAST is much faster to encode the slow
motion sequence container, without any quality
degradation. This is due to the fact that CAST directly
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adopts the MV predictor as the MV in most slow motion
background MBs, therefore no search is required.

4, CONCLUSION
A content adaptive search scheme is proposed. CAST
provides adaptabilily to varicus types of video contents.
Experiment shows that CAST can estimate the MVF
accurately. It outscores MVFAST and AMSED in both
visual quality and computational cost. The proposed
scheme has the best overall performance among the
compared algorithms after considering the overhead
introduced by the online video analysis process.
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Table 2: Correlation coefficients between PMVF and the true MVF

a) Predicted from frame ¢-/

b) Predicted from frame -2

c) Predicted from frame #-3

WMI Inertia] 7] WML Incrtia[ 7] WMI Incrtia[7]

X Y X Y X Y X Y X Y X Y
Coastguard | 0.825] 0.028| 0.829] 0.036 Coastguard | 0.766| 0.038| 0.754| 0.051 Coastguard | 0439} 0.175] 0.462{ 0.100
\Foreman 0.569{ 0.366| 0.548] 0.310 Foreman 0.570] 0.330| 0.541| 0.284 Foreman 0.448| 0.260| 0.410{ 0.213
Table tennis | 0.586| 0.547| 0.524| 0.500 Table tennis | 0.545] 0.503| 0.493] 0455 Table tennis | 0.589] 0.433| 0.554| 0419
IStefan 0.694| 0.317| 0.653( 0.311 Stefan 0.657] 0.410| 0.617| 0.357 Stefan 0.318] 0.179| 0.288) 0.159
Aversge | 0:668] 0.314] 0.638] 0289 Average | D433| 0320] 0.601) 0287  [Avernge | 0.448] 0.262) 0.420{ 0223

Table 3: PSNR and search speed comparison
CIE —_oaF

Sequences | ME 1 PSNR  {Check Points| speedup | PSNRgain |  PSNR _ |Check Points] speedup | PSNR gain |

MVFAST 39.065 52816 1 4] 48.951 10639 1 0

Container | AMSED 39.065 43228 1.22 ¢ 48.951 10235 1.04 0

casT | aopes ] aied _ 1268 O] . 48951 909 _1L7 0

MVFAST 38.341 281823 1 0 43.715 53120 1 0

Foreman | AMSED 38.305 158043 1.78 -.036 43.729 33356 1‘59 0.014

CAST | 38368 146070 EE .02 4373 ] . 3115 169 DO

MVFAST 32.451 219872 1 0 38.252 66857 1 0

Stefan AMSED 32.404 169307 1.3 -0.047 38.203 37884 1.76 -0.049

_CAST | 32597 | 127126 1.73 0.146F 38316 24377 274 0.064

Tabl MVFAST 35.998 265012 ] 0 42.546 78212 1 0

Tcannfs AMSED 35.882 165927 1.6 -0.116 42.506 3654_? 2.14 -0.04

TCAST 1608 | _1amer LT T T T 243 0040
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